

Class – XI (Going to XII) – Sample Paper Duration : 2 hrs. | Maximum Marks : 180

IMPORTANT INSTRUCTIONS

- 1. This Booklet is your Question Paper. DO NOT break seal of Booklet until the invigilator instructs to do so.
- 2. Fill your APRE Roll No. & Answer Sheet No. in the space provided on the cover page.
- 3. Please make sure that paper you received is of your class only.
- 4. The Answer Sheet is provided to you separately which is a machine-readable Optical Response Sheet (ORS).

You have to mark your answers in the ORS by darkening bubble, as per your answer choice, by using black or blue ball point pen.

- 5. After breaking the Question Paper seal, check there are 8 pages in the booklet. This Question Paper contains 60 MCQs with 4 choices (Subjects: Physics: 20, Chemistry: 20, Maths: 20)
- 6. Think wisely before darkening bubble as there is negative marking for wrong answer. Answer once marked by pen cannot be cancelled.
- 7. Marking Scheme:
 - a. If darkened bubble is RIGHT answer: 3 Marks.
 - b. If darkened bubble is WRONG answer: 1 Mark (Minus One Mark).
 - c. If no bubble is darkened in any question: No Mark.
- 8. If you are found involved in cheating or disturbing others, then your ORS will be cancelled.
- 9. Do not put any stain on ORS and hand. It over back properly to the invigilator.

Name of the Candidate: _____

Registration Number: _____

12. A man is sitting in a bus. He suddenly falls ahead when bus suddenly apply brakes because.

- (A) Man is taken back
- (B) Due to gravitation
- (C) Inertia of rest keeps the lower part of the body at rest whereas the upper part of body in motion by inertia of motion
- (D) None of the above

13. A mass of 1kg is suspended by a string A. Another string C is connected to its lower end. If a sudden jerk is given to C then

(A) The portion of AB of the string will break

- (B) The portion BC of the string will break
- (C) None of the string will break
- (D) The mass will start rotating
- 14. The mass m is placed on a body of mass M. There is no friction. The force F is applied on M and it moves with acceleration a. Then the force on the top body is:

15. A trolley of mass 20 kg is attached to a block of mass 4 kg by a massless string passing over a frictionless pulley as shown in the figure. If the coefficient of kinetic friction between trolley and the surface is 0.02, then the acceleration of the trolley and block system is: (Take $g = 10 \text{ ms}^{-2}$)

16. The acceleration of m_1 and m_2 are a_1 and a_2 then

(D) $a_1 \le a_2$

17. A man pushes a wall and fails to displace it. He does
(A) Negative work
(B) Positive but not maximum work
(C) No work at all
(D) Maximum work

- 18. A force of 10 N acts on a 10 kg body initially at rest. The work done by the force during the first 5 second and 5th second of motion of body is. (in joule)
 (A) 3, 1.5
 (B) 9, 4
 (C) 11.5, 5
 (D) 125, 45
- 19. A right triangular wooden block of mass M = 4 kg is at rest on a smooth table as shown in the figure. Two smaller wooden cubes both of mass m = 2 kg, initially at rest on the two sides of the larger block start sliding down. What is the normal force (in newton) applied by the system on the table? (take $g = 9.8 \text{ m/s}^2$)

(A) 58.8 N (B) 58 N

20. A force of 10 N acts on a body of 2 kg mass for a distance of 1 m. The kinetic energy received by the body is—
(A) 20 J
(B) 10 J
(C) 5 J
(D) 2.5 J

CHEMISTRY

- 21. The average molecular mass of a mixture of gas containing nitrogen and carbon dioxide is 36. The mixture contain 280 gm of nitrogen, therefore, the amount of CO₂ present in the mixture is (A) 440 gm
 (B) 44 gm
 (C) 0.1mole
 (D) 880 gm
- 22. The number of molecules present in 88 g of CO₂ (Relative molecular mass of CO₂ = 44) (A) 1.24×10^{23} (B) 3.01×10^{23} (C) 6.023×10^{24} (D) 1.2046×10^{24}
- 23.
 What volume of 0.4-M FeCl_{3.6}H₂O will contain 600 mg of Fe³⁺ ?

 (A) 49.85 mL
 (B) 26.78 mL
 (C) 147.55 mL
 (D) 87.65 mL
- Equal volumes of 0.50 M of HCl, 0.25 M of NaOH and 0.75 M of NaCl are mixed. The molarity of the NaCl solution is (A) 0.75 M
 (B) 1/3 M
 (C) 0.50 M
 (D) 2.00 M
- 25. Which of the following statements is wrong regarding ionic compounds -
 - (A) These are generally in solid state at room temperature
 - (B) The force of attraction between ions is non directional
 - (C) Ionic compounds are soluble in all solvents
 - (D) They conduct electricity in molten and solution state
- 26. π bond can be formed between -(A) C - C (B) O - O (C) N - N (D) All of these
- 28. Which of the following molecular orbital has two nodal planes -(A) $\sigma 2s$ (B) $\pi^* 2p_y$ (C) $\sigma 2p_z$ (D) $\sigma^* 2p_x$

29.	Correct order of Bond energy in -	
	(A) $C-C > N-N > O-O > F-F$	(B) $C-C < N-N < O-O < F-F$
	(C) $C-C > N-N > O-O < F-F$	(D) $O-O > N-N > C-C > F-F$

30. Calculate the wavelength of the spectral line when the electron in the hydrogen atom undergoes a transition from fourth energy level to second energy level?
(A) 4.86 nm
(B) 486 nm
(C) 48.6 nm
(D) 4860 nm

31. In two H atoms X and Y the electrons move around the nucleus in circular orbits of radius r and 4r respectively. The ratio of the times taken by them to complete one revolution is (A) 1:4
(B) 1:2
(C) 1:8
(D) 2:1

32. A 200g cricket ball is thrown with a speed of 3.0×10^3 cm sec⁻¹. What will be its de Broglie's wavelength? [h = 6.6×10^{-27} g cm² sec⁻¹] (A) 1.1×10^{-32} cm (B) 2.2×10^{-32} cm (C) 0.55×10^{-32} cm (D) 11.0×10^{-32} cm

33. If n and l are respectively the principal and azimuthal quantum numbers, then the expression for calculating the total number of electrons in any energy level is -

(A) $\sum_{\ell=0}^{\ell=n} (2\ell+1)$ (B) $\sum_{\ell=1}^{\ell=n-1} (2\ell+1)$ (C) $\sum_{\ell=0}^{\ell=n+1} (2\ell+1)$ (D) $\sum_{\ell=0}^{\ell=n-1} (2\ell+1)$

34. The oxidation number of sulphur in S_8 , S_2F_2 and H_2S respectively are -(A) 0, +1 and -2 (B) + 2, +1 and -2 (C) 0, +1 and +2 (D) - 2, +1 and -2

35. When the ion $Cr_2O_7^{2-}$ acts as n oxidant in acidic aqueous solution the ion Cr^{3+} is formed. How many moles of Sn^{2+} would be oxidised to Sn^{4+} by one mole of $Cr_2O_7^{2-}$ ions - (A) 2/3 (B) 3/2 (C) 2 (D) 3

36. 0.05 moles of NaHCO₃ will react with how many equivalents of Mg(OH)₂?
(A) 0.2 equiv
(B) 0.05 equiv
(C) 0.02 equiv
(D) 0.01 equiv

37. What will be the distance between A and B atom in AB? If radius of A is 0.37 Å and the radius of B is 1.67 Å - (According to the concept of co-valent radius and zero electronegativity difference between A and B)
(A) 2.04 Å
(B) 1.96 Å
(C) 2.12 Å
(D) 1.0 Å

- 38. Which of the following elements has the maximum electron affinity ?(A) F(B) Cl(C) Br(D) I
- **39.** Which of the following is weakest basic oxides-
(A) Fe2O3(B) FeO(C) BaO(D) Na2O
- 40. Which of the following involves maximum amount of energy -(A) $Mg_{(g)}^- \rightarrow Mg_{(g)}$ (B) $Mg_{(g)}^{2+} \rightarrow Mg_{(g)}^{3+}$ (C) $Mg_{(g)}^- \rightarrow Mg_{(g)}^+$ (D) $Mg_{(g)}^+ \rightarrow Mg_{(g)}^{2+}$

MATHEMATICS

41.	In a class of 55 students, the number of students studying different subjects are 23 in Mathematics, 24 in Physics, 19 in Chemistry, 12 in Mathematics and Physics, 9 in Mathematics and Chemistry, 7 in Physics and Chemistry and 4 in all the three subjects. The number of students who have taken exactly one subject is					
	(A) 10	(B) 8	(C) 5	(D) 22		
42.	The value of tan 1° ta (A) 1	an 2° tan 3° tan 89° is (B) 0	s (C) ∞	(D) 1/2		
43.	The value of $sin(\pi + (A) - 1)$	$(-\theta)\sin(\pi-\theta)\csc^2\theta$ (B) 0	θ is equal to (C) sin θ	(D) None of these		
44.	If $\tan 25^\circ = x$, then $\frac{\tan 155^\circ - \tan 115^\circ}{1 + \tan 155^\circ \tan 115^\circ}$ is equal to					
	(A) $\frac{1-x^2}{2x}$	(B) $\frac{1+x^2}{2x}$	(C) $\frac{1+x^2}{1-x^2}$	(D) $\frac{1-x^2}{1+x^2}$		
45.	If $\tan \alpha + \cot \alpha = a$ (A) $a^4 + 4a^2 + 2$	then the value of $\tan^4 a$ (B) $a^4 - 4a^2 + 2$	$a + \cot^4 \alpha =$ (C) $a^4 - 4a^2 - 2$	(D) None of these		
46.	The point A divides points B and C are (1 (A) 7, 9	the join of the points (1, 5) and (7, -2) respecti (B) 6, 7	 -5, 1) and (3, 5) in the vely. If the area of ΔAB (C) 7, 31/9 	ratio k : 1 and coordinates of C be 2 units, then k equals (D) 9, 31/9		
47.	A line is perpendicul (A) 2/3	ar to $3x + y = 3$ and pa (B) $1/3$	asses through a point (2, (C) 1	(D) 4/3		
48.	The equation of the line whose slope is 3 and which cuts off an intercept 3 from the positive x – axis is					
	(A) $y = 3x - 9$	(B) $y = 3x + 3$	(C) $y = 3x + 9$	(D) None of these		
49.	The third term of a C (A) 4^3	G.P. is 4. The product of (B) 4 ⁵	the first five terms is (C) 4 ⁴	(D) None of these		
50.	If p is positive, then the sum to infinity of the series, $\frac{1}{1+p} - \frac{1-p}{(1+p)^2} + \frac{(1-p)^2}{(1+p)^3} - \dots$ is					
	(A) <mark>1/2</mark>	(B) 3/4	(C) 1	(D) None of these		
51.	Let T_r be the r th term of an A.P. whose first term is a and common difference is d. If for some					
	positive integers $m, n, m \neq n, T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a – d equals-					
	(A) <mark>0</mark>	(B) 1	(C) 1/mn	(D) $\frac{1}{m} + \frac{1}{n}$		
52.	The equation of the l line segment joining (A) $2x - 3y + 8 = 0$	ine parallel to the line 2: the points (1, 3) and (1, 0	x - 3y = 18 and passing (-7), is (B) $2x - 3y = 8$	through the middle point of the		

(A) 2x - 3y + 8 = 0(B) 2x - 3y(C) 2x - 3y + 4 = 0(D) 0

53.	The equation of a smagnitude but oppose (A) $x - y + 5 = 0$	straight line passing the ite in sign from the axes (B) $x + y + 39 = 0$	rough (-22, -17) and s is given by (C) $x - y - 39 = 0$	cutting an intercept equal in (D) $x + y + 5 = 0$		
54.	If $A = \{2, 4, 5\}$, $B = (A) 6$	$\{7, 8, 9\}$, then $n(A \times B)$ (B) 9	is equal to (C) 3	(D) 0		
55.	If m^{th} terms of the series $63 + 65 + 67 + 69 + \dots$ and $3 + 10 + 17 + 24 + \dots$ be equal, then m is equal to (A) 11 (D) 15					
56.	If $aN = \{ax : x \in N\}$ and $bN \cap cN = dN$, where $b, c \in N$ are relatively prime, then (A) $d = bc$ (B) $c = bd$ (C) $b = cd$ (D) None of these					
57.	If $\sin \theta + \csc \theta =$ (A) 1	2, then $\sin^2 \theta + \csc^2$ (B) 4	$\theta =$ (C) 3	(D) None of these		
58.	The points $\left(0, \frac{8}{3}\right)$, (1,3) and (82,30) are vertices of					
	(A) an obtuse angled triangle(B) an ac(C) a right angled triangle(D) none		(B) an acute angled tri(D) none of these	cute angled triangle of these		
59.	Sum up to 16 terms of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ is (A) 450 (B) 456 (C) 446 (D) none of these					
60.	If a, b, c are in G.P., then the equations $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root if $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in -					
	(A) A.P.	(B) G.P.	(C) H.P.	(D) none of these		