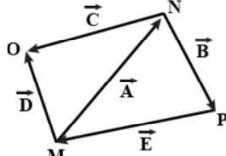


Class – XI (Going to XII)

Duration: 2 hrs. | Maximum Marks: 180

IMPORTANT INSTRUCTIONS


- 1. This Booklet is your Question Paper. DO NOT break seal of Booklet until the invigilator instructs to do so.
- 2. Fill your APRE Roll No. & Answer Sheet No. in the space provided on the cover page.
- 3. Please make sure that paper you received is of your class only.
- 4. The Answer Sheet is provided to you separately which is a machine readable Optical Response Sheet (ORS).
 - You have to mark your answers in the ORS by darkening bubble, as per your answer choice, by using black or blue ball point pen.
- 5. After breaking the Question Paper seal, check there are 11 pages in the booklet. This Question Paper contains 60 MCQs with 4 choices (Subjects: Physics: 20, Chemistry: 20, Biology: 20)
- 6. Think wisely before darkening bubble as there is negative marking for wrong answer. Answer once marked by pen cannot be cancelled.
- 7. Marking Scheme:
 - a. If darkened bubble is RIGHT answer: 3 Marks.
 - b. If darkened bubble is WRONG answer: 1 Mark (Minus One Mark).
 - c. If no bubble is darkened in any question: No Mark.
- 8. If you are found involved in cheating or disturbing others, then your ORS will be cancelled.
- 9. Do not put any stain on ORS and hand. It over back properly to the invigilator.

Name of the Candidate:	 	
Registration Number: _		

PHYSICS

- 1. Given that T stands for time period and l stands for the length of simple pendulum. If g is the acceleration due to gravity, then which of the following statements about the relation $T^2 = (l/g)$ is correct?
 - (A) It is correct both dimensionally as well as numerically
 - (B) It is netiher dimensionally correct nor numerically
 - (C) It is demensionally correct but not numerically
 - (D) It is numerically correct but not dimensionally.
- In the relation $\frac{dy}{dt} = 2\omega \sin(\omega t + \phi_0)$, the dimensional formula for $\omega t + \phi_0$ is 2.
 - (A) MLT
- (B) MLT⁰
- (D) $M^{0}L^{0}T^{0}$
- If frequecy F, velocity V, and density D are considered fundamental units the dimensional formula for momentum 3. will be
 - (A) DVF²
- (B) DV^2F^{-1}
- (C) $D^2V^2F^2$
- (D) DV^4F^{-3}

From figure, the correct relation is 4.

- (A) $\vec{A} + \vec{B} + \vec{E} = \vec{0}$ (B) $\vec{C} \vec{D} = -\vec{A}$
- (C) $\vec{B} + \vec{E} \vec{C} = -\vec{D}$
- (D) All of the above

5. The vector sum of two forces is perpendicular to their vector difference. The forces are

(A) Equal to each other

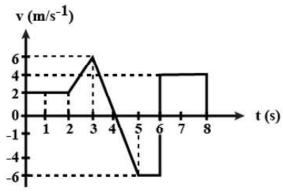
- (B) Equal to each other in magnitude
- (C) Not equal to each other in magnitude
- (D) Cannot be predicted

A ball is released from the top of a tower of height h. It takes time T to reach the ground. What is the position of 6. the ball (from ground) after time T/3?

- (A) h/9 m
- (B) 7h/9 m
- (C) 8h/9 m
- (D) 17h/18 m

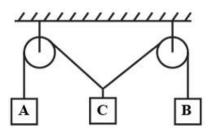
7. The velocity acquired by a body moving with uniform acceleration is 30 ms⁻¹ in 2 s and 60 ms⁻¹ in 4s. The initial velocity is

- (A) zero
- (B) 2 ms^{-1}
- (C) 3 ms^{-1}
- (D) 10 ms⁻¹

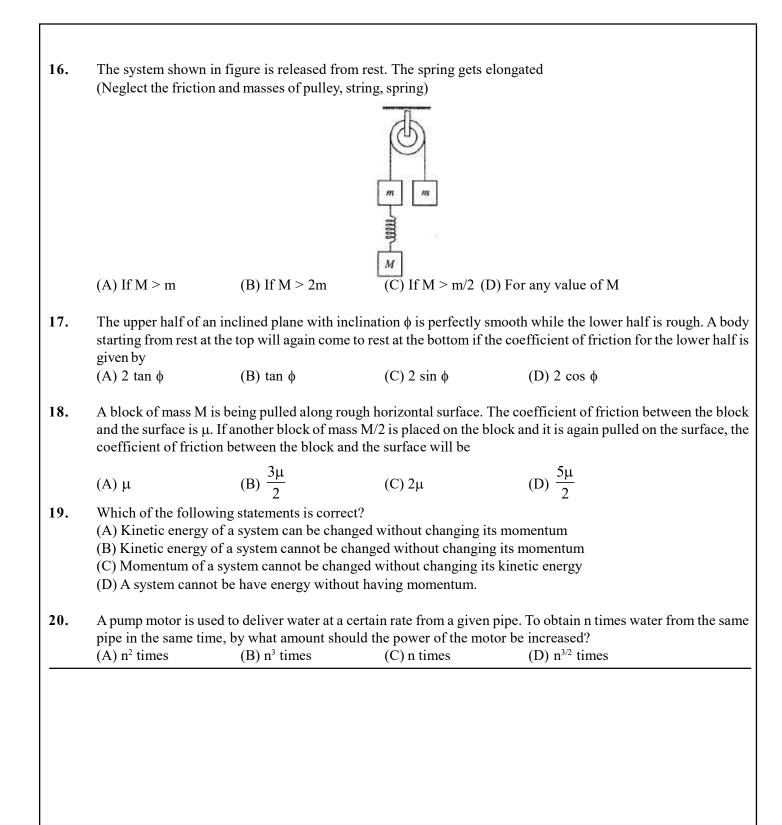

The relation between time t and distance x is $t = \alpha x^2 + \beta x$ where α and β are constants. The retardation is 8.

- (A) $2\alpha v^3$
- (B) $2\beta v^3$
- (C) $2\alpha\beta v^3$
- (D) $2\beta^2 v^3$

9. A drunkard is walking along a straight road. He takes five steps forward and three steps backward and so on. Each step is 1 m long and takes 1s. There is a pit on the road 11 m away from the starting point. The drunkard will fail into the pit will be


- (A) 29 s
- (B) 21 s
- (C) 37 s
- (D) 31 s

10. The velocity – time graph of a body is shown in figure. The displacement of the body in 8 s is



- (A) 9 m
- (B) 12 m
- (C) 10 m
- (D) 28 m

- 11. A ball is thrown at different angles with the same speed u and from the same point and it has the same range in both the cases. If y_1 and y_2 are the heights attained in the two cases, then $y_1 + y_2$ is equal to
 - (A) $\frac{u^2}{g}$
- (B) $\frac{2u^2}{\sigma}$
 - (C) $\frac{u^2}{2g}$
- (D) $\frac{u^2}{4\sigma}$
- 12. Two paper screens A and B are separated by 150 m. A bullet pierces A and B. The hole in B is 15 cm below the hole is A. If the bullet is travelling horizontally at the time of hitting A, then the velocity of the bullet at A is $(g = 10 \text{ ms}^{-2})$
- (A) $100\sqrt{3} \text{ ms}^{-1}$ (B) $200\sqrt{3} \text{ ms}^{-1}$ (C) $300\sqrt{3} \text{ ms}^{-1}$ (D) $500\sqrt{3} \text{ ms}^{-1}$
- Ship A is travelling with a velocity of 5 km h⁻¹ due east. A second ship is heading 30° east of north. What should 13. be the speed of second ship if it is to remain always due north with respect to the first ship?
 - (A) 10 km h^{-1}
- (B) 9 km h⁻¹
- (C) 8 km h^{-1}
- (D) $7 \text{ km } h^{-1}$
- 14. A plumb bob is hung from the ceiling of a train compartment. The train moves on an inclined track of inclination 30° with horizontal. The acceleration of train up the plane is a = g/2. The angle which the string supporting the bob makes with normal to the ceiling in equilibrium is
 - $(A) 30^{\circ}$
- (B) $\tan^{-1}(2/\sqrt{3})$ (C) $\tan^{-1}(\sqrt{3}/2)$ (D) $\tan^{-1}(2)$
- 15. Three blocks A, B and C are suspended as shown in figure. Mass of each of blocks A and B is m. If the system is in equilibrium, and mass of C is M, then

- (A) M > 2 m
- (B) M = 2 m
- (C) M < 2 m
- (D) None of these

		CHE	MISTRY		
21.				50% O ₂ by weight, the other almost O ₂ (fixed) are in the ratio of - (D) 3: 2	
22.	When 10 ml of propane (gas) is combusted completely, volume of CO ₂ (g) obtained in similar condition is -				
	(A) 10 ml	(B) 20 ml	(C) 30 ml	(D) 40 ml	
23.	Which have non-interval (A) O_2^+	egral bond order - (B) O_2^-	(C) NO	(D) All of these	
24.	Every H ₂ O molecule is (A) 2	s surrounded by maxim (B) 3	um how many H ₂ O mo (C) 4	lecule - (D) 6	
25.	hybrid as-			pound, $N \equiv C-CH = CH_2$ involves the	
	(A) sp and sp ²	(B) sp ² and sp ³	(C) sp and sp ³	(D) sp and sp	
26.	•	of the given molecule (B) NF ₃ > BF ₃ > NH ₃		(D) NH ₃ > BF ₃ > NF ₃	
• •		l, Br or I) and ${\rm BrF_6^-}$ - (B) Pentagonal pyramidal (D) None of these			

28.	The frequency of first line of Balmer series in hydrogen atom is v_0 . The frequency o line emitted by singly ionised helium atom is -			is v_0 . The frequency of corresponding
	(A) 2v ₀	(B) 4v ₀	(C) v ₀ /2	(D) v ₀ /4
29.			nove around the nucle	us in circular orbits of radius r and 4r one revolution is -
	(A) 1:4	(B) 1:2	(C) 1:8	(D) 2:1
30.	-	ton and an alpha partic ler of their de-Broglie v	_	s of 16E, 4E and E respectively. What is
	(A) $\lambda_{\rm e} > \lambda_{\rm p} = \lambda_{\alpha}$	(B) $\lambda_{\rm p} = \lambda_{\alpha} > \lambda_{\rm e}$	(C) $\lambda_{p} > \lambda_{e} > \lambda_{\alpha}$	(D) $\lambda_{\alpha} < \lambda_{e} >> \lambda_{p}$
31.	In Fe ₄ [Fe(CN) ₆], the	he O.N. of the complex	ed iron is -	
	(A) + 3		(C) + 4	(D) + 6
32.	What weight of nitr	ate ion (calculated as Hì	NO_3) is needed to conver	t 5g of iodine into iodic acid according to
	2 3	$+ HIO_3 + NO_2 + H_2O$		
	(A) 12.4 g	(B) 24.8 g	(C) 0.248 g	(D) 49.6 g
33.	KMnO ₄ solution. W	Which of the following is	most likely to represent the	ts exactly with 25 ml of 0.04 (M) acidified he change in oxidation state of z correctly? $Z^{2+} \longrightarrow Z^{4+}$

34.	When we move from left to right in a period (A) Increases (C) No change		od electropositive character - (B) Decreases (D) First increases then decreases	
35.		increasing atomic radio	_	
	(A) S < O < Se < C	(B) O < C < S < Se	(C) O < S < Se < C	(D) C < O < S < Se
36.	The ratio of the energy (A) 1 / 4	of a photon of 2000 Å w (B) 4	avelength radiation to the (C) 1 / 2	at of 4000 Å radiation is (D) 2
37.	The shortest wavelengt is	h of He atom in Balmer s	eries is x, then longest w	avelength in the Paschene series of Li ⁺²
	$(A) \frac{36x}{5}$	(B) $\frac{16x}{7}$	(C) $\frac{9x}{5}$	(D) $\frac{5x}{9}$
38.		,F,S and Cl are in the ord (B) O < S < F < Cl		(D) S < O < F < C1
 39. PCl₅ exists but NCl₅ does not because: (A) Nitrogen has no vacant 2d-orbitals (B) NCl₅ is unstable (C) Nitrogen atom is much smaller than P (D) Nitrogen is highly inert 				
				nert
40.	Oxidation number of C	in CH ₂ Cl ₂ is -		
	(A) +2	(B) + 4	(C) –4	(D) 0

BIOLOGY

	(A) Taxon	(B) Species	(C) Genus	(D) Order
2.	_	al in characters as com	1 0	(D) Species
	(A) Family	(B) Division	(C) Class	(D) Species
3.		ing is a correct statement		
	. , .	ve DNA, Ribosome an		d V: d M
		re a group of autotropi lusively heterotrophic		under Kingdom Monera.
			ms classified under King	dom Monera.
4.			sease in humans are due	· —
	(A) Bacterium	(B) Virus	(C) Viroid	(D) Prion
5.	Identify the pair of h	eterosporous pteridopl	nytes among the followin	g:
(A) Equisetum and Salvinia (B) Lycopodium and Selaginella			•	
	(C) Selaginella and S	Salvinia	(D) Psilotum and S	Salvinia
6.	Which classes of alo	rae nossess nioment fil	coxanthin and nigment n	hycoerythrin, respectively?
0.	(A) Phaeophyceae a		1 0 1	e and Rhodophyceae
	(C) Chlorophyceae		. ,	e and Phaeophyceae
_	WH: 1 C.1 C.11		1 10	
7.	(A) Volvox - Starch	ing is incorrectly match	ned? (B) Ectocarpus - I	Fucovanthin
	(C) Ulothrix - Mann	itol	(D) Porphyra - Flo	
	(0) 010		(<i>D</i>) 1 01 <i>p</i> 11 <i>y</i> 1111 11	
8.				
	(A) Echinodermata	D (B) Ctenophora	(C) Hemichordata	(D) Coelenterata

49.	The unique mammalia (A) pinna, monocondy (C) hairs, pinna and m	lic skull and mammary g	, ,	npanic membrane and mammary glands na and indirect development	
50.	The Transverse section of plant part showed polyarch, radial and exarch xylem, with endodermis and pericy The plant is identified as:			h xylem, with endodermis and pericycle.	
	(A) Monocot root	(B) Dicot root	(C) Dicot stem	(D) Monocot stem	
51.	Consider the following plant tissues: (A) Axillary buds (C) Interfascicular cambium (E) Intercalary meristem Identify the lateral meristems among the above (A) (A), (C) and (D) only		(B) Fascicular vascular cambium (D) Cork cambium e (B) (B), (C) and (D) only		
	(C) (A), (B), (C) and		(D) (A), (B), (D) and		
52.	The morphological na	ture of the edible part of	a coconut is		
	(A) 1. Cotyledon	(B) 2. Perisperm	(C) 3. Pericarp	(D) 4. Endosperm	
53.	Radial symmetry is fo (A) Cassia	ound in the flowers of (B) Pisum	(C) Trifolium	(D) Brassica	
54.	Which of the following statements are correct with respect of Golgi apparatus? It is the important site for the A. formation of glycoprotein and glycolipids B. It produces cellular energy in the form of ATP C. It modifies the protein synthesized by ribosomes on ER D. It facilitates the transport of ions E. It provides mechanical support Choose the most appropriate answer from the options given below: (A) (B) and (C) only (B) (A) and (C) only (C) (A) and (D) only (D) (D) and (E) only				
55.	Which of the following statements with respect to Endoplasmic Reticulum is incorrect? (A) SER are the sites for lipid synthesis (B) RER has ribosomes attached to ER (C) SER is devoid or ribosomes (D) prokaryotes only RER are present				

- -		. 1					
56.	Select the incorrect m Column I	Select the incorrect match:					
	(B) Allosomes	Diplotene bivalents chromosomes					
	(C) Submetacentric	Sex chromosomes L-shaped chromosomes					
	(D) Polytene	Oocytes of amphibit					
	(D) Polytene	Oocytes of amphibi	ians chromosomes				
57.	The Golgi complex par	rticipates in					
	(A) Fatty acid breakdo	own	(B) Formation of	secretory vesicles			
	(C) Respiration in bac	teria	(D) Activation of amino acid				
58.	Casparian strips occur	r in?					
	(A) Epidermis	(B) Pericycle	(C) Cortex	(D) Endodermis			
		•	, ,	. ,			
59.				and the other is labelled as Reason (R)			
	` ,		ates but all chrodates a				
	()	1	rtebral column in the a				
	•	·	the most appropriate	answer from the options given below:			
	(A) (A) is not correct	` /					
		` '	the correct explanatio				
	(C) Both (A) and (R)	are correct but (R) is	not the correct explana	ation of (A).			
	(D) (A) correct but (F	() is not correct.					
60.	Select the correct stat	rements:					
	(a) Paltyhelminthes are triploblastic pseudocoelomate and bilaterally symmetrical organisms.						
(b) Ctenophores reproduces only sexually and fertilization is external.							
			sexes are not separate.				
		•	loblastic and biolumine	scent organisms.			
	(e) In sponges, fertiliz	-		5			
			_				
	Choose the correct answer from the options given below: (A) (a), (c) and (d) only (B) (b), (c) and (d) only						
	(C) (a) and (e) only	J	(D) (b) and (d) or	•			
	(3) (4) 4114 (3) 51115			,			