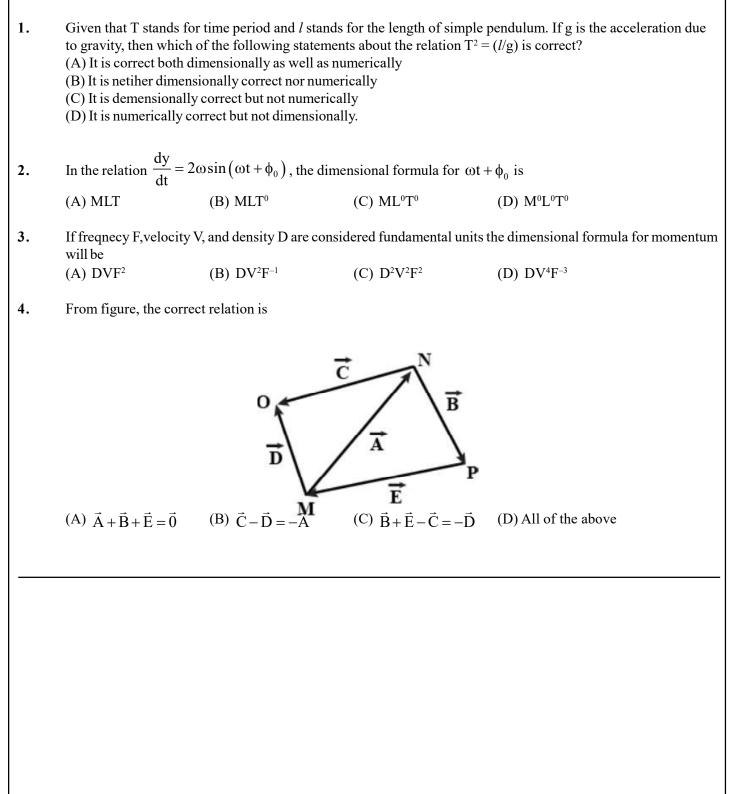


Class – X (Going to XI) Duration : 2 hrs. | Maximum Marks : 180

IMPORTANT INSTRUCTIONS

- 1. This Booklet is your Question Paper. DO NOT break seal of Booklet until the invigilator instructs to do so.
- 2. Fill your APRE Roll No. & Answer Sheet No. in the space provided on the cover page.
- 3. Please make sure that paper you received is of your class only.
- 4. The Answer Sheet is provided to you separately which is a machine readable Optical Response Sheet (ORS).


You have to mark your answers in the ORS by darkening bubble, as per your answer choice, by using black or blue ball point pen.

- 5. After breaking the Question Paper seal, check there are 11 pages in the booklet. This Question Paper contains 60 MCQs with 4 choices (Subjects: Physics: 20, Chemistry: 20, Maths: 20)
- 6. Think wisely before darkening bubble as there is negative marking for wrong answer. Answer once marked by pen cannot be cancelled.
- 7. Marking Scheme:
 - a. If darkened bubble is RIGHT answer: 3 Marks.
 - b. If darkened bubble is WRONG answer: 1 Mark (Minus One Mark).
 - c. If no bubble is darkened in any question: No Mark.
- 8. If you are found involved in cheating or disturbing others, then your ORS will be cancelled.
- 9. Do not put any stain on ORS and hand. It over back properly to the invigilator.

Name of the Candidate: _____

Registration Number: _____

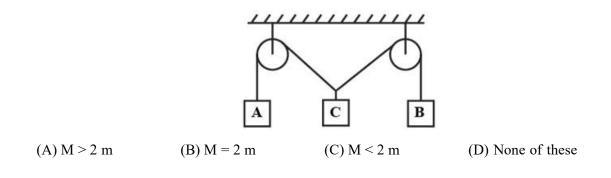
PHYSICS

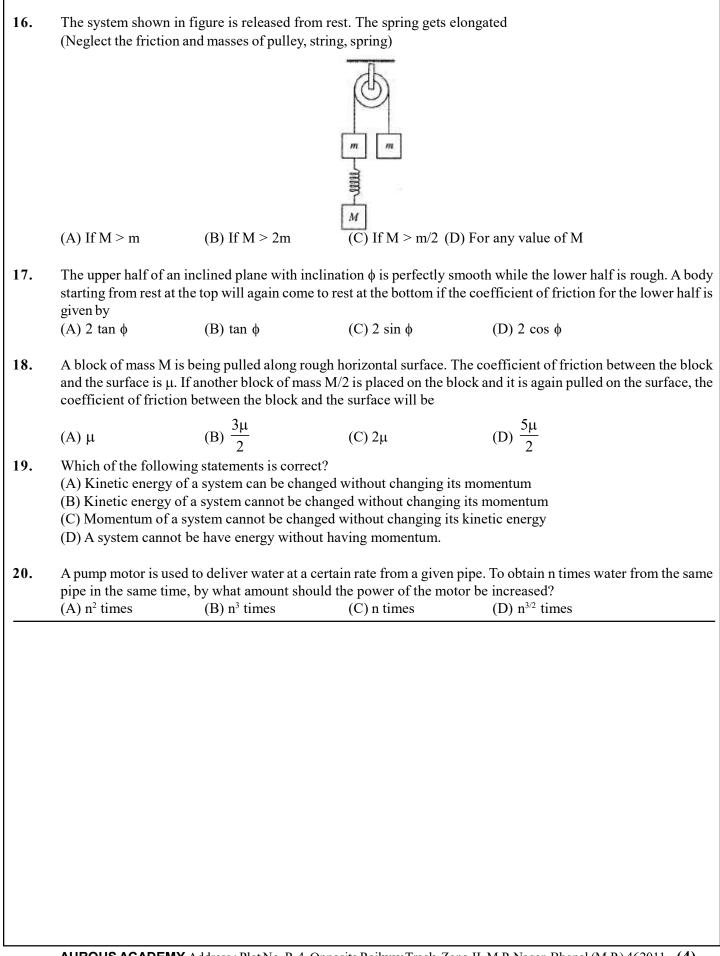
7.	the ball (from ground (A) h/9 m The velocity acquired velocity is	l) after time T/3? (B) 7h/9 m	eight h. It takes time 7 (C) 8h/9 m	T to reach the ground. What is the position o (D) 17h/18 m				
7.	The velocity acquired velocity is		(C) 8h/9 m	(D) 17h/18 m				
	velocity is	l by a body moving with						
		i by a body moving with	The velocity acquired by a body moving with uniform acceleration is 30 ms ⁻¹ in 2 s and 60 ms ⁻¹ in 4s. The initia velocity is					
8. '	(A) zero	(B) 2 ms ^{-1}	(C) 3 ms^{-1}	(D) 10 ms^{-1}				
	The relation betwee	n time t and distance x	is $t = \alpha x^2 + \beta x$ where	α and β are constants. The retardation is				
	(A) $2\alpha v^3$	(B) $2\beta v^3$	(C) $2\alpha\beta v^3$	(D) $2\beta^2 v^3$				
]	A drunkard is walking along a straight road. He takes five steps forward and three steps backward and so on Each step is 1 m long and takes 1s. There is a pit on the road 11 m away from the starting point. The drunkard wil fail into the pit will be							
	(A) 29 s	(B) 21 s	(C) 37 s	(D) 31 s				
10.	The velocity – time graph of a body is shown in figure. The displacement of the body in 8 s is							
	v (m/s ⁻¹) $\begin{array}{c} & & & \\ $							
	(A) 9 m	(B) 12 m	(C) 10 m	(D) 28 m				

11. A ball is thrown at different angles with the same speed u and from the same point and it has the same range in both the cases. If y_1 and y_2 are the heights attained in the two cases, then $y_1 + y_2$ is equal to

(A)
$$\frac{u^2}{g}$$
 (B) $\frac{2u^2}{g}$ (C) $\frac{u^2}{2g}$ (D) $\frac{u^2}{4g}$

12. Two paper screens A and B are separated by 150 m. A bullet pierces A and B. The hole in B is 15 cm below the hole is A. If the bullet is travelling horizontally at the time of hitting A, then the velocity of the bullet at A is $(g = 10 \text{ ms}^{-2})$


(A) $100\sqrt{3} \text{ ms}^{-1}$ (B) $200\sqrt{3} \text{ ms}^{-1}$ (C) $300\sqrt{3} \text{ ms}^{-1}$ (D) $500\sqrt{3} \text{ ms}^{-1}$


13.Ship A is travelling with a velocity of $5 \text{ km } h^{-1}$ due east. A second ship is heading 30° east of north. What should
be the speed of second ship if it is to remain always due north with respect to the first ship?
(A) 10 km h^{-1}

(B) 9 km h^{-1}

(C) 8 km h^{-1}

(D) 7 km h^{-1}

14. A plumb bob is hung from the ceiling of a train compartment. The train moves on an inclined track of inclination 30° with horizontal. The acceleration of train up the plane is a = g/2. The angle which the string supporting the bob makes with normal to the ceiling in equilibrium is

(A) 30° (B) $\tan^{-1}(2/\sqrt{3})$ (C) $\tan^{-1}(\sqrt{3}/2)$ (D) $\tan^{-1}(2)$

15. Three blocks A, B and C are suspended as shown in figure. Mass of each of blocks A and B is m. If the system is in equilibrium, and mass of C is M, then

		CHE	MISTRY			
21.	There are two common oxides of Sulphur, one of which contains 50% O_2 by weight, the other almost exactly 60%. The weights of sulphur which combine with 1 g of O_2 (fixed) are in the ratio of -					
	(A) 1 : 1	(B) 2 : 1	(C) 2 : 3	(D) 3 : 2		
22.	When 10 ml of propane (gas) is combusted completely, volume of CO ₂ (g) obtained in similar condition is -					
	(A) 10 ml	(B) 20 ml	(C) 30 ml	(D) 40 ml		
23.	Which have non-integral bond order -					
	(A) O ₂ ⁺	(B) O ₂ ⁻	(C) NO	(D) All of these		
24.	Every H ₂ O molecule is	s surrounded by maximi	um how many H_2O mol	lecule -		
	(A) 2	(B) 3	(C) 4	(D) 6		
25.	The bond between on hybrid as-	carbon atom (1) and ca	arbon atom (2) in comp	pound, N = $C - CH_{(1)} = CH_2$ involves the		
	(A) sp and sp ²	(B) sp ² and sp ³	(C) sp and sp ³	(D) sp and sp		
26. The dipole moments of the given molecules are such that -						
	(A) BF ₃ > NF ₃ > NH ₃	3 (B) NF ₃ > BF ₃ > NH ₃	(C) NH ₃ > NF ₃ > BF ₃	(D) NH ₃ > BF ₃ > NF ₃		
27.	Predict shape of Sb3	X_6^{3-} , Te X_6^{2-} (where X = C	Cl, Br or I) and BrF_6^- -			
	 (A) Octahedral (C) Trigonal bipyramidal 		(B) Pentagonal pyramidal (D) None of these			

28.	The frequency of first line of Balmer series in hydrogen atom is v_0 . The frequency of corresponding line emitted by singly ionised helium atom is -						
	(A) 2v ₀	(B) 4v ₀	(C) v ₀ /2	(D) v ₀ /4			
29.	In two H atoms X and Y the electrons move around the nucleus in circular orbits of radius r and 4r						
	respectively. The r	respectively. The ratio of the times taken by them to complete one revolution is -					
	(A) 1:4	(B) 1 : 2	(C) 1 : 8	(D) 2 : 1			
30.	An electron, a proton and an alpha particle have kinetic energies of 16E, 4E and E respectively. What is						
	the qualitative order of their de-Broglie wavelengths ?						
	(A) $\lambda_{e} > \lambda_{p} = \lambda_{\alpha}$	(B) $\lambda_p = \lambda_\alpha > \lambda_e$	(C) $\lambda_p > \lambda_e > \lambda_\alpha$	(D) $\lambda_{\alpha} < \lambda_{e} >> \lambda_{p}$			
31.	In Fe ₄ [Fe(CN) ₆] ₃ the O.N. of the complexed iron is -						
	(A) + 3	(B) + 2	(C) + 4	(D) + 6			
32.	What weight of nitrate ion (calculated as HNO ₃) is needed to convert 5g of iodine into iodic acid according to						
	the reaction -						
	$I_2 + HNO_3 \longrightarrow HIO_3 + NO_2 + H_2O$						
	(A) 12.4 g	(B) 24.8 g	(C) 0.248 g	(D) 49.6 g			
33.	25 ml of a 0.1 (M) solution of a stable cation of transition metal z reacts exactly with 25 ml of 0.04 (M) acidified						
	KMnO ₄ solution. W	Vhich of the following is a	most likely to represent th	he change in oxidation state of z correctly?			

34.	When we move from left to right in a perio		·			
	(A) Increases		(B) Decreases			
	(C) No change		(D) First increases t	hen decreases		
35.	The correct order of increasing atomic radius of the following elements is -					
	(A) S < O < Se < C	(B) O < C < S < Se	(C) O < S < Se < C	(D) C < O < S < Se		
36.	The ratio of the energy (A) 1 / 4	y of a photon of 2000 Å v (B) 4	wavelength radiation to the condition (C) 1 / 2	hat of 4000 Å radiation is (D) 2		
37.	The shortest wavelength of He atom in Balmer series is x, then longest wavelength in the Paschene series of Li^{+2} is					
	(A) $\frac{36x}{5}$	(B) $\frac{16x}{7}$	(C) $\frac{9x}{5}$	(D) $\frac{5x}{9}$		
38.	Electron affinities of O,F,S and Cl are in the order.					
	(A) $O < S < Cl < F$	(B) O < S < F < Cl	(C) S < O < Cl < F	(D) $S < O < F < Cl$		
39.	PCl_5 exists but NCl_5 does not because :					
	(A) Nitrogen has no vacant $2d$ -orbitals		(B) NCl_5 is unstable			
	(C) Nitrogen atom is much smaller than P		(D) Nitrogen is highly inert			
40.	Oxidation number of C in CH_2Cl_2 is -					
	(A) +2	(B) + 4	(C) -4	(D) 0		

MATHEMATICS

	(A) 7, 6	(B) 6, 3	(C) 5, 1	(D) 8, 7			
2.	If A= $\left\{ \phi, \left\{ \phi ight\} ight\}$, then power set of A is						
	(A) A	(B) $\{\phi, \{\phi\}, \{\{\phi\}\}\}$	$\left. \right\}, A \right\}$ (C) $\left\{ \phi, \left\{ \phi \right\}, A \right\}$	(D) None of these			
3.	The smallest set A	The smallest set A such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$ is					
	(A) {2, 3, 5}	(B) {3, 5, 9}	(C) {1, 2, 5, 9}	(D) None of these			
14.	If a cos θ + b sir	$\theta = 3 \& a \sin \theta - b \cos \theta$	s θ = 4 then a ² + b ² has t	he value =			
	(A) 25	(B) 14	(C) 7	(D) None of these			
45.	$\cos(540^\circ - \theta) - \sin(630^\circ - \theta)$ is equal to						
	(A) 0	(B) $2 \cos \theta$	(C) $2\sin\theta$	(D) $\sin\theta - \cos\theta$			
		$\alpha + \beta$					
46.	If 3 sin α = 5 sin β , then $\frac{\tan \frac{\alpha + \beta}{2}}{\tan \frac{\alpha - \beta}{2}}$ is equal to						
		2					
	(A) 1	(B) 2	(C) 3	(D) 4			
47.	The value of $\cot x + \cot(60^\circ + x) + \cot(120^\circ + x)$ is equal to						
	(A) cos 3x	(B) tan 3x	(C) 3 tan 3x	(D) $\frac{3-9\tan^2 x}{3\tan x - \tan^3 x}$			

48.	(A) $2:3$	(B) 6 : 4	ints (3, -4) and (-5, 6) is (C) 3 : 2	(D) none of these		
40				nean : : 3 : 5. The value of n is.		
49.	(A) 12	(B) 16	(C) 18 (C) 18	(D) 20		
50.	The angle between	the lines $y - x + 5 = 0$	and $\sqrt{3}x - y + 7 = 0$ is			
	(A) 15°	(B) 60°	(C) 45°	(D) 75°		
51.	The area of triangle	formed by the lines >	x + y - 3 = 0, x - 3y + 9 =	= 0 and 3x - 2y + 1 = 0		
	(A) $\frac{16}{7}$ sq. units	(B) $\frac{10}{7}$ sq. units	(C) 4 sq. units	(D) 9 sq. units		
52.	The line x + 3y – 2 = 0 bisects the angle between a pair of straight lines of which one has equation x 7y + 5 = 0. The equation of the other line is					
	(A) $3x + 3y - 1 = 0$	(B) $x - 3y + 2 = 0$	(C) 5x + 5y − 3 = 0	(D) none		
53.	If a_1, a_2, a_3, \dots are in A.P. such that $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$, then $a_1 + a_2 + a_3 + \dots + a_{23} + a_{24}$ is equal to					
	(A) 909	(B) 75	(C) 750	(D) 900		
54.	The sum to 10 terms of the series $\sqrt{2} + \sqrt{6} + \sqrt{18} + \sqrt{54} + \dots$ is					
	(A) 121 $(\sqrt{6} + \sqrt{2})$	(B) $\frac{121}{2}(\sqrt{3}+1)$	(C) 243 (\[\] \[+ 1)	(D) 243 (\[\sqrt{3} - 1)		
55.	The sum of those integers from 1 to 100 which are not divisible by 3 or 5 is					
	(A) 2489	(B) 4735	(C) 2317	(D) 2632		

56. The value of
$$\left(1 + \cos \frac{\pi}{9}\right) \left(1 + \cos \frac{3\pi}{9}\right) \left(1 + \cos \frac{5\pi}{9}\right) + \left(1 + \cos \frac{7\pi}{9}\right)$$
 is
(A) $\frac{10}{16}$ (B) $\frac{9}{16}$ (C) $\frac{5}{16}$ (D) $\frac{12}{16}$
57. A line L passes through the points (1, 1) and (2, 0) and another line M which is perpendicular to L passes through the point (1/2, 0). The area of the triangle formed by the lines with y axis is (A) 25/8 (B) 25/16 (C) 25/4 (D) None
58. If a set A has n elements then the total number of subsets of A is
(A) 2n (B) n (C) 2ⁿ (D) n²
59. Let R be the relation on N defined as by $x + 2y = 8$. Then domain of R is
(A) $\{2,4,6,8\}$ (B) $\{2,4,8\}$ (C) $\{1,2,3,4\}$ (D) $\{2,4,6\}$
60. $\cos 75^{n} = 7$
(A) $\frac{(\sqrt{2}-1)}{2\sqrt{2}}$ (B) $\frac{(\sqrt{2}+1)}{2\sqrt{2}}$ (C) $\frac{(\sqrt{3}+1)}{2\sqrt{2}}$ (D) $\frac{(\sqrt{3}-1)}{2\sqrt{2}}$

I